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We present a simple model based on the classic Shockley model to explain the magnetotransport in nonmagnetic p–n junctions. Under a magnetic
field, the evaluation of the carrier to compensate Lorentz force establishes the necessary space-charge region distribution. The calculated current–
voltage (I–V ) characteristics under various magnetic fields demonstrate that the conventional nonmagnetic p–n junction can exhibit an extremely
large magnetoresistance effect, which is even larger than that in magnetic materials. Because the large magnetoresistance effect that we
discussed is based on the conventional p–n junction device, our model provides new insight into the development of semiconductor mag-
netoelectronics. © 2018 The Japan Society of Applied Physics

L
arge magnetoresistance (MR) effects in nonmagnetic
semiconductor devices will provide modern electro-
nics with more functionality and applications, which

will have a profound impact on the existing and emerging
semiconductor industry. In contrast to the negligible MR
in nonmagnetic semiconductors,1) recently, extremely large
MR effects have been reported in doped Ag2Se,2,3) InSb,4)

WTe2,5) GaAs,6) Ge,7–9) and Si.10–19) The MR ratio of these
materials can be comparable to and even larger than those of
magnetic materials over a large temperature range.

There are presently two proposed explanations for the large
MR effect in nonmagnetic materials. One is a quantum theory
of the MR effect.20,21) When the individual quantum levels
associated with the electron orbits are distinct, these effects
become noticeable. However, this makes practical realization
unique to a few semiconductors having tiny pockets of the
Fermi surface with a small effective mass. The other explana-
tion is the model of inhomogeneity conductors.22–28) Such
inhomogeneity could produce a large spatial fluctuation in the
conductivity tensor. In this case, the obtained large MR effect
is derived from the deformation of current paths, which causes
an uncompensated Hall field to be involved in transverse MR.

According to the inhomogeneity MR mechanism, the
conventional p–n junction device can also be considered as a
perfect system to obtain a large MR effect.29–32) This is
because the p–n junction takes advantage of the bipolar
(electron and hole) nature of transport in an inhomogeneously
doped semiconductor. The opposite sign of the carrier
mobility between the electron and the hole can increase the
fluctuation of the carrier mobility, which effectively enhances
the MR effect.5) More importantly, the transport properties of
the p–n junction are dominated by the intrinsic space-charge
region (SCR). Experiments have shown that manipulating the
SCR in the p–n junction by applying a magnetic field can
significantly affect the transport behavior, which leads to a
large MR effect.29–31)

In this work, we propose a model to demonstrate the large
MR effect of the p–n junction. We will show in detail how
the intrinsic SCR of the p–n junction evolves under a
magnetic field and how the SCR distribution further causes
the large MR effect of the p–n junction. Because our model is
only based on the conventional p–n junction structure, the
large MR effect of the p–n junction should be universal and
useful for future magnetoelectronics.

The basis of our model is a conventional p–n junction
structure. In Fig. 1(a), the left side is a p-type semiconductor

doped with Na acceptors per unit volume, the right side is an
n-type semiconductor with Nd donors per unit volume, and
the middle region is the SCR. As we discussed above, it is the
physics of the SCR that gives rise to the interesting electrical
and magnetic properties of the bipolar p–n junction. When
the width of the SCR is tuned by the electric field, the resist-
ance of the p–n junction can vary by several orders of mag-
nitude, i.e., from conducting to cut-off. This is also known as
the rectification effect of the p–n junction. The following
interesting question is what happens in the p–n junction
under a magnetic field. Can the magnetic field also change
the SCR, just like the electric field? In contrast to conven-
tional semiconductors under a magnetic field, there are
enough accumulated carriers to generate a Hall electric field
to balance the Lorentz force. On the other hand, in the p–n
junction, the mobilizable carriers in the SCR are too few

(a) (b)
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Fig. 1. Schematic illustration of the large MR effect in p–n junction
originating as a result of the spatial distribution of the SCR induced by a
magnetic field. (a) Without a magnetic field, the boundary of the SCR
between p- and n-type semiconductors is uniform, as shown by the black
dashed lines. However, when we apply an external magnetic field, the SCR
will be redistributed, since the carriers in the p- and n-type regions are
deflected by Lorentz force and accumulate at the edges of the junction. The
redistribution boundaries of the SCR under the magnetic field are defined as
x = up(n)(y), and are represented as the red dashed lines. (b) According to our
model, to balance the magnetic field, a trapezoidal distribution of the SCR
with the slope μpH and −μnH is formed. The boundaries of the SCR under a
magnetic field are represented by the red dashed lines. (c) The width of the
SCR is adjusted by changing the external electric field; this is also known as
the rectification effect of the p–n junction. When a forward voltage is applied,
the SCR of the p–n junction shrinks from the dashed line to the solid line.
The black line represents the rectification effect at zero magnetic field, and
the red line represents the rectification effect under a magnetic field.
(d) Calculated energy band diagram of silicon p–n junction at room
temperature.
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to balance the Lorentz force. Instead, a carrier concentration
deviation is formed, which induces a diffusion process to
compensate the Lorentz force in the SCR. This hypothesis
is also confirmed by considering the carrier movement in
the p- and n-type regions. The carriers in the p- and n-type
regions are both deflected owing to the Lorentz force. The
deflected carriers will accumulate at the boundary and thus
change the SCR. As a result, the carrier concentration in the
SCR shows a deviation.

To systematically analyze the evolution of the SCR under
a magnetic field, we expand the classic Shockley model to
describe the magnetic field effect. As shown in Fig. 1(a),
without the magnetic field, the SCR is uniform. However,
when the magnetic field is applied, the boundary of the SCR
is tuned by the magnetic field and expressed as x = up(y) and
x = un(y). Thus, the hole and electron current densities,
Jp and Jn, resulting from both the electric field E and the
magnetic field H, are shown as33)

Jp ¼ q�ppE � qDprp þ q�ppvp �H; (1a)

Jn ¼ q�nnE þ qDnrn � q�nnvn �H; (1b)

where q, p (n), μp (μn), Dp (Dn), and vp (vn) stand for carrier
charge, concentration, mobility, diffusivity, and drift velocity
for a hole (electron), respectively. The first term of Eq. (1)
represents the drift of the carrier driven by an external electric
field, the second term represents the diffusion of the carrier
due to the concentration gradient, and the last term represents
the carrier deflection due to Lorentz force under a magnetic
field. When the p–n junction is in thermal equilibrium, the
current density is zero, i.e., Jp ¼ Jn ¼ 0.

According to the electrostatic equation, the built-in electric
field at an arbitrary position Aðx; yÞ in Fig. 1(a) depends on
the charge distribution, namely,

r � Eðx; yÞ ¼ qðpðx; yÞ � nðx; yÞ þ Nd � NaÞ="; ð2Þ
where ε is the dielectric constant of silicon. Equation (2) is
also known as Poisson’s equation.

If we replace the drift velocity in Eq. (1) with

vp ¼ �pE; vn ¼ ��nE; ð3Þ
we can solve the partial differential Eqs. (1a), (1b), and (2) to
obtain the stable distributions of Eðx; yÞ, pðx; yÞ, and nðx; yÞ
under different magnetic fields H, by adding the appropriate
boundary conditions.

To obtain an analytical solution, the above models are
further simplified by the following assumptions. First, we
assume that the magnetic field is along the z-direction.
Second, we assume that the impurity ions in the SCR are all
ionized, and the carriers entering the SCR are ignored. Thus,
the amount of charge in the SCR is equal to the concentration
of impurity ions implanted. Finally, we assume that the
electric field in the SCR is only in the x-direction. Therefore,
to consider the thermal equilibrium state of the p–n junction,
the continuity Eq. (1a) for holes and Poisson’s Eq. (2) can be
rewritten as

q�ppðx; yÞEðx; yÞ � qDp
@pðx; yÞ

@x
¼ 0; ð4Þ

�qDp
@pðx; yÞ

@y
þ q�ppðx; yÞ½�pEðx; yÞ�H ¼ 0; ð5Þ

r � Eðx; yÞ ¼ �qNa=": ð6Þ

Equation (4) describes that the carrier drift driven by the
electric field is balanced by the carrier diffusion due to the
carrier concentration deviation along the x-direction, while
Eq. (5) describes that the carrier deflection driven by the
magnetic field is balanced by the carrier diffusion due to the
carrier concentration deviation along the y-direction. Accord-
ing to Eq. (6), we can obtain the distribution of the electric
field, which depends on the boundary of the SCR,

Eðx; yÞ ¼ �qNaðx � upðyÞÞ=": ð7Þ
When we substitute Eq. (7) into Eq. (4) and utilize

Einstein’s relation, we can obtain the distribution of the
carrier concentration,

pðx; yÞ ¼ pp exp � q2

2kT"
Naðx � upðyÞÞ2

� �
; ð8Þ

where pp stands for the hole density in the p region (pp ≈ Na),
k is Boltzmann’s constant, and T is temperature.

Finally, according to the continuity Eq. (5) along the
y-direction, we can obtain the boundary of the SCR of the
p region side using Eq. (8),

upðyÞ ¼ �pHy þ Cp: ð9Þ
Similarly, we can obtain the boundary of the SCR of the n

region side,

unðyÞ ¼ ��nHy þ Cn: ð10Þ
According to Eqs. (9) and (10), one can easily find that the

SCR under the magnetic field has a trapezoid distribution
with the slopes μpH and −μnH, as shown in Fig. 1(b). Thus,
the width of the SCR (w) changes with y as w = wb −
(μp + μn)Hy, with wb = Cn − Cp being the bottom width of
the SCR with the magnetic field, which leads to the injected
minority carriers varying with y. We integrate and average
the injected minority holes (electrons), �pnð�npÞ, at the right
(left) boundary of the SCR along the y-direction,

�pn ¼ Na

Z l

0

exp

�
� q

�kT
w2

�
dy

l
� exp � qV0

kT

� �
0
BBB@

1
CCCA; (11a)

�np ¼ Nd

Z l

0

exp

�
� q

�kT
w2

�
dy

l
� exp � qV0

kT

� �
0
BBB@

1
CCCA; (11b)

where α = (2ε=q) · [(Na + Nd)=NaNd], V0 is the built-in
potential difference of the p–n junction, and l is the length
of the p–n junction along the y-direction, as shown in
Fig. 1(b).

According to the Shockley theory, the current flow through
the p–n junction is equal to the sum of the hole and electron
diffusion currents, which are proportional to �pn and �np,33)

I ¼ qADp

Lp
�pn þ qADn

Ln
�np; ð12Þ

where A and Lp (Ln) stand for the cross-sectional area of the
p–n junction and the diffusion length of holes (electrons),
respectively. When we apply a voltage to the p–n junction,
the boundary of the SCR under the magnetic field is corre-
spondingly shifted to achieve a new balance to compensate
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the external electrical field. As shown in Fig. 1(c), the
boundary of the SCR changes from the red dashed line to the
red solid line when the forward voltage is applied. That is, the
width of the SCR (w) in Eq. (11) changes to w ¼ wb �
ð�p þ �nÞHy � �1=2ðV1=2

0 � ðV0 � V Þ1=2Þ. Figure 1(d) shows
the energy band diagram of our p–n junction at room
temperature. The magnitude of the built-in potential differ-
ence V0 is 0.534V.

On the basis of the above model, we can calculate the
current–voltage (I–V ) curves under different magnetic fields
at room temperature. The simulation parameters shown are
close to the parameters of a real silicon-based p–n junction,
where Na = 2.0 × 1014 cm−3, Nd = 1.0 × 1015 cm−3, μp = 480
cm2 s−1V−1, and μn = 1350 cm2 s−1 V−1. As shown in
Fig. 2(a), all the I–V curves show the rectification effect.
However, when the magnetic field is applied, the current
is suppressed and gradually decreases as the magnetic
field increases, indicating a large positive MR. Here, MR is
defined as

MR ð%Þ ¼ RðHÞ � Rð0Þ
Rð0Þ : ð13Þ

Notably, the calculated I–V curves under different magnetic
fields are consistent with the experimental results.29)

The corresponding MR curve at V = 0.4V at various
temperatures (T ) is shown in Fig. 2(b). As the temperature
increases, MR sharply decreases. For H = 3.5 T, at T = 50K,
MR can reach up to 4500%, while at T = 300K, MR is about
2000%, which is even larger than those of the magnetic mate-
rial devices. There are two features of the calculated MR.
One is that, at a lower magnetic field, MR increases sharply.
This indicates a higher magnetic sensitivity at the lower
magnetic field. The other is that MR gradually shows linear
magnetic field dependence when H is beyond 1.5 T, even
up to 10T. Notably, the calculated MR results are similar to
the MR observed experimentally,34) where a dynamic p–n
junction is created by carrier injections from heavily doped
n+ and p+ regions to the very lowly doped n-region. By
utilizing the influence of the magnetic field on a dynamic p–n
junction, the MR of the whole device can be amplified and a
higher magnetic sensitivity is achieved at the lower magnetic
field. We also calculate the MR in backward bias. For
H = 3.5 T and T = 300K, the MR is only 2% at V = −0.1V,
which is three orders of magnitude smaller than that at
V = 0.4V. This is consistent with our experimental results.

To optimize the MR effect of the p–n junction, we further
adjust the doping concentration to obtain a large MR effect.
We set NaNd = 2 × 1029 cm−3 to keep the built-in electrical
potential V0 unchanged. According to Caughey’s empirical
formulas for the mobility of silicon,35) μn and μp as functions
of Nd are depicted in Fig. 3(a). As Nd increases, the value of μn
is almost unchanged for Nd up to 2 × 1014 cm−3 and then drops
sharply, while μp increases at the beginning and becomes
saturated for Nd > 2 × 1015 cm−3. The Nd dependences of MR
for various magnetic fields are calculated by substituting the
above mobilities into our model. The inset in Fig. 3(b) shows
the non-normalized MR as a function of Nd. Clearly, the larger
MR is achieved at the higher magnetic field. However, we find
that the normalized MR ratios for different magnetic fields
exhibit the same behaviors, as shown in Fig. 3(b). The maxi-
mum MR occurs at Nd = 3 × 1014 cm−3. At this point,

Nd ≈ Na, and the total mobility μt = μn + μp is also maximal.
The maximum μt enhances the magnetic field influence of the
SCR, thus resulting in the largest MR. Therefore, according to
our calculation, Na in the p region should be designed to equal
Nd in the n region to obtain the maximal MR for the p–n
junction. The lower (higher) donor impurity doping Nd will

(a)

(b)

Fig. 2. (a) Calculated I–V curves of the p–n junction at room temperature
for various magnetic fields. From left to right, the magnetic field is increased
from 0 to 3.5 T. (b) Calculated MR curves of the p–n junction at a fixed
voltage V = 0.4V at different temperatures. From top to bottom, the
temperature is increased from 50 to 300K.

(a)

(b)

Fig. 3. (a) Electron (hole) mobility μn (μp) as a function of the donor
doping concentration Nd, obtained using Caughey’s empirical formulas.
Here, we set NaNd = 2 × 1029 cm−3 to keep the built-in electrical potential V0

unchanged. (b) Normalized MR as a function of Nd for various magnetic
fields. The inset shows the non-normalized MR as a function of Nd for
various magnetic fields.
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reduce the hole (electron) mobility because of the ionized
impurity scattering, which induces the decrease in μt.

In summary, we proposed a simple model to explain the
large MR effect discovered experimentally in the silicon-
based p–n junction. In contrast to conventional semiconduc-
tors, where the electric field due to the accumulated carriers
is formed to balance the Lorentz force, owing to the variation
of the SCR in the p–n junction, a concentration gradient is
formed, which leads to a diffusion process to balance the
Lorentz force. The analysis further showed that the SCR has
a trapezoidal distribution under a magnetic field, and the
slopes of the two sides are related to μH. The calculated I–V
characteristics and MR characteristics of the p–n junction are
consistent with the experimental results, proving the accuracy
of the model. Moreover, we suggest that the MR of the p–n
junction can be enhanced by both enhancing the mobility
and modulating the donor concentration to equal the acceptor
concentration. Our computer simulation results reveal the
origin of MR in the p–n junction and indicate a viable avenue
for magnetoelectric devices based on semiconductors.
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